z-logo
Premium
Positive solution for asymptotically linear elliptic systems
Author(s) -
Peng Chaoquan,
Yang Jianfu
Publication year - 2010
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.1192
Subject(s) - mathematics , pure mathematics , mathematical analysis , discrete mathematics
In this paper, we show that semilinear elliptic systems of the form 1\documentclass{article}\footskip=0pc\usepackage{amssymb}\usepackage[mathscr]{euscript}\pagestyle{empty}\begin{document}\begin{eqnarray*}\left\{\begin{array}{ll}-(\Delta u-u)+\mathrm{\mu}(\Delta v-v)=g(x,v), & x \in {\mathbb{R}}^N\\-(\Delta v-v)+\lambda(\Delta u-u)=f(x,u), & x \in {\mathbb{R}}^N\end{array}\right.\end{eqnarray*}\end{document} possess at least one positive solution pair ( u, v )∈ H 1 (ℝ N )× H 1 (ℝ N ), where λ and µ are nonnegative numbers, f ( x, t ) and g ( x, t ) are continuous functions on ℝ N ×ℝ and asymptotically linear as t →+∞. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom