z-logo
Premium
Pharmacophore‐Map‐Pick: A Method to Generate Pharmacophore Models for All Human GPCRs
Author(s) -
Dai ShaoXing,
Li GongHua,
Gao YueDong,
Huang JingFei
Publication year - 2016
Publication title -
molecular informatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 68
eISSN - 1868-1751
pISSN - 1868-1743
DOI - 10.1002/minf.201500075
Subject(s) - pharmacophore , virtual screening , g protein coupled receptor , drug discovery , computational biology , computer science , chemistry , stereochemistry , biology , receptor , biochemistry
GPCR-based drug discovery is hindered by a lack of effective screening methods for most GPCRs that have neither ligands nor high-quality structures. With the aim to identify lead molecules for these GPCRs, we developed a new method called Pharmacophore-Map-Pick to generate pharmacophore models for all human GPCRs. The model of ADRB2 generated using this method not only predicts the binding mode of ADRB2-ligands correctly but also performs well in virtual screening. Findings also demonstrate that this method is powerful for generating high-quality pharmacophore models. The average enrichment for the pharmacophore models of the 15 targets in different GPCR families reached 15-fold at 0.5 % false-positive rate. Therefore, the pharmacophore models can be applied in virtual screening directly with no requirement for any ligand information or shape constraints. A total of 2386 pharmacophore models for 819 different GPCRs (99 % coverage (819/825)) were generated and are available at http://bsb.kiz.ac.cn/GPCRPMD.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom