z-logo
Premium
Pharmacophore Alignment Search Tool (PhAST): Significance Assessment of Chemical Similarity
Author(s) -
Hähnke Volker,
Rupp Matthias,
Hartmann Alexander K.,
Schneider Gisbert
Publication year - 2013
Publication title -
molecular informatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 68
eISSN - 1868-1751
pISSN - 1868-1743
DOI - 10.1002/minf.201300021
Subject(s) - gumbel distribution , markov chain monte carlo , similarity (geometry) , gaussian , sampling (signal processing) , mathematics , monte carlo method , computer science , statistics , data mining , artificial intelligence , chemistry , computational chemistry , extreme value theory , filter (signal processing) , image (mathematics) , computer vision
Previously, we proposed a ligand-based virtual screening technique (PhAST) based on global alignment of linearized interaction patterns. Here, we applied techniques developed for similarity assessment in local sequence alignments to our method resulting in p-values for chemical similarity. We compared two sampling strategies, a simple sampling strategy and a Markov Chain Monte Carlo (MCMC) method, and investigated the similarity of sampled distributions to Gaussian, Gumbel, modified Gumbel, and Gamma distributions. The Gumbel distribution with a Gaussian correction term was identified as the most similar to the observed empirical distributions. These techniques were applied in retrospective screenings on a drug-like dataset. Obtained p-values were adjusted to the size of the screening library with four different methods. Evaluation of E-value thresholds corroborated the Bonferroni correction as a preferred means to identify significant chemical similarity with PhAST. An online version of PhAST with significance estimation is available at http://modlab-cadd.ethz.ch/.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom