
Variants identified in PTK7 associated with neural tube defects
Author(s) -
Lei Yunping,
Kim SungEun,
Chen Zhongzhong,
Cao Xuanye,
Zhu Huiping,
Yang Wei,
Shaw Gary M.,
Zheng Yufang,
Zhang Ting,
Wang HongYan,
Finnell Richard H.
Publication year - 2019
Publication title -
molecular genetics and genomic medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.765
H-Index - 29
ISSN - 2324-9269
DOI - 10.1002/mgg3.584
Subject(s) - missense mutation , spina bifida , biology , genetics , population , gene , mutation , medicine , environmental health
Background Variants in planar cell polarity (PCP) pathway genes have been repeatedly implicated in the pathogenesis of NTDs in both mouse models and in human cohorts. Mouse models indicate that the homogenous disruption of the Ptk7 gene, a PCP regulator, results in craniorachischisis; while embryos that are doubly heterozygous for Ptk7 XST87 and Vangl2 Lp mutations present with spina bifida. Methods In this study, we initially sequenced exons of the human PTK7 gene in 192 spina bifida patients and 190 controls from a California population. A phase II validation study was performed in 343 Chinese NTD cohort. Functional assays including immunoblotting and immunoprecipitation were used to study identified variants effect on PTK7 function. Results We identified three rare (MAF <0.001) missense heterozygous PTK7 variants (NM_001270398.1:c.581C>T, p.Arg630Ser and p.Tyr725Phe) in the spina bifida patients. In our functional analyses, p.Arg630Ser affected PTK7 mutant protein stability and increased interaction with Dvl2, while the p.Thr186Met variant decreased PTK7 interactions with Dvl2. No novel predicted‐to‐be‐damaging variant or function‐disrupted PTK7 variant was identified among the control subjects. We subsequently re‐sequenced the PTK7 CDS region in 343 NTDs from China to validate the association between PTK7 and NTDs. The frequency of PTK7 rare missense variants in the Chinese NTD samples is significantly higher than in gnomAD controls. Conclusion Our study suggests that rare missense variants in PTK7 contribute to the genetic risk of NTDs.