z-logo
open-access-imgOpen Access
Targeting trisomic treatments: optimizing Dyrk1a inhibition to improve Down syndrome deficits
Author(s) -
Stringer Megan,
Goodlett Charles R.,
Roper Randall J.
Publication year - 2017
Publication title -
molecular genetics and genomic medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.765
H-Index - 29
ISSN - 2324-9269
DOI - 10.1002/mgg3.334
Subject(s) - dyrk1a , phenotype , down syndrome , biology , medicine , genetics , gene
Overexpression of Dual‐specificity tyrosine‐phosphorylated regulated kinase 1A ( DYRK 1A ), located on human chromosome 21, may alter molecular processes linked to developmental deficits in Down syndrome ( DS ). Trisomic DYRK 1A is a rational therapeutic target, and although reductions in Dyrk1a genetic dosage have shown improvements in trisomic mouse models, attempts to reduce Dyrk1a activity by pharmacological mechanisms and correct these DS ‐associated phenotypes have been largely unsuccessful. Epigallocatechin‐3‐gallate ( EGCG ) inhibits DYRK 1A activity in vitro and this action has been postulated to account for improvement of some DS ‐associated phenotypes that have been reported in preclinical studies and clinical trials. However, the beneficial effects of EGCG are inconsistent and there is no direct evidence that any observed improvement actually occurs through Dyrk1a inhibition. Inconclusive outcomes likely reflect a lack of knowledge about the tissue‐specific patterns of spatial and temporal overexpression and elevated activity of Dyrk1a that may contribute to emerging DS traits during development. Emerging evidence indicates that Dyrk1a expression varies over the life span in DS mouse models, yet preclinical therapeutic treatments targeting Dyrk1a have largely not considered these developmental changes. Therapies intended to improve DS phenotypes through normalizing trisomic Dyrk1a need to optimize the timing and dose of treatment to match the spatiotemporal patterning of excessive Dyrk1a activity in relevant tissues. This will require more precise identification of developmental periods of vulnerability to enduring adverse effects of elevated Dyrk1a, representing the concurrence of increased Dyrk1a expression together with hypothesized tissue‐specific‐sensitive periods when Dyrk1a regulates cellular processes that shape the long‐term functional properties of the tissue. Future efforts targeting inhibition of trisomic Dyrk1a should identify these putative spatiotemporally specific developmental sensitive periods and determine whether normalizing Dyrk1a activity then can lead to improved outcomes in DS phenotypes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here