Open Access
Two novel KCNA1 variants identified in two unrelated Chinese families affected by episodic ataxia type 1 and neurodevelopmental disorders
Author(s) -
Yuan Haiming,
Yuan Huihua,
Wang Qingming,
Ye Wanhua,
Yao Ruixia,
Xu Wanfang,
Liu Yanhui
Publication year - 2020
Publication title -
molecular genetics and genomic medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.765
H-Index - 29
ISSN - 2324-9269
DOI - 10.1002/mgg3.1434
Subject(s) - missense mutation , genetics , exome sequencing , sibling , ataxia , medicine , phenotype , genotype , genetic counseling , biology , psychiatry , psychology , gene , developmental psychology
Abstract Background Pathogenic KCNA1 variants have been linked to episodic ataxia type 1 (EA1), a rare neurological syndrome characterized by continuous myokymia and attacks of generalized ataxia that can be triggered by fever, abrupt movements, emotional stress, and fatigue. Currently, over 40 KCNA1 variants have been identified in individuals with EA1. Methods A male patient displayed partial seizures in addition to EA1 symptoms, often triggered by fever. A sibling presented with typical EA1 symptoms, seizures, and learning difficulties. In addition, the older brother displayed cognitive impairment, developmental delay, and slurred speech, which were absent in his younger sister. Whole‐exome sequencing was performed for the patients. Results A novel de novo missense variant in KCNA1 (p.Ala261Thr) was identified in the male patient, which is located in a base of the 3rd transmembrane domain (S3). The other novel KCNA1 variant (p.Gly376Ser) was identified in the sibling and was inherited from an unaffected father with low‐level mosaicism. The variant was located in the S5–S6 extracellular linker of the voltage sensor domain of the Kv channel. Next, we systematically reviewed the available clinical phenotypes of individuals with EA1 and observed that individuals with KCNA1 variants at the C‐terminus were more likely to suffer from seizures and neurodevelopmental disorders than those with variants at the N‐terminus. Conclusion Our study expands the mutation spectrum of KCNA1 and improves our understanding of the genotype–phenotype correlations of KCNA1 . Definitive genetic diagnosis is beneficial for the genetic counseling and clinical management of individuals with EA1.