z-logo
open-access-imgOpen Access
A novel splicing pathogenic variant in COL1A1 causing osteogenesis imperfecta (OI) type I in a Chinese family
Author(s) -
Han Yaxin,
Wang Dongming,
Guo Jinli,
Xiong Qiuhong,
Li Ping,
Zhou YongAn,
Zhao Bin
Publication year - 2020
Publication title -
molecular genetics and genomic medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.765
H-Index - 29
ISSN - 2324-9269
DOI - 10.1002/mgg3.1366
Subject(s) - minigene , sanger sequencing , biology , genetics , rna splicing , exome sequencing , exon , exon skipping , frameshift mutation , alternative splicing , gene , microbiology and biotechnology , mutation , rna
Abstract Background Osteogenesis imperfecta (OI), a rare autosomal inheritable disorder characterized by bone fragility and skeletal deformity, is caused by pathogenic variants in genes impairing the synthesis and processing of extracellular matrix protein collagen type I. With the use of next‐generation sequencing and panels approaches, an increasing number of OI patients can be confirmed and new pathogenic variants can be discovered. This study sought to identify pathogenic gene variants in a Chinese family with OI I. Methods Whole‐exome sequencing was used to identify pathogenic variants in the proband, which is confirmed by Sanger sequencing and cosegregation analysis; MES, HSF, and Spliceman were used to analyze this splicing variantqRT‐PCR was performed to identify the mRNA expression level of COL1A1 in patient peripheral blood samples; Minigene splicing assay was performed to mimic the splicing process of COL1A1 variants in vitro; Analysis of evolutionary conservation of amino acid residues and structure prediction of the mutant protein. Results A novel splicing pathogenic variant (c.3814+1G>T) was identified in this OI family by using whole‐exome sequencing, Sanger sequencing, and cosegregation analysis. Sequencing of RT‐PCR products from the COL1A1 minigene variant reveals a 132‐nucleotide (nt) insertion exists at the junction between exons 48 and exon 49 of the COL1A1 cDNA. Splicing assay indicates that the mutated minigene produces an alternatively spliced transcript which may cause a frameshift resulting in early termination of protein expression. The molecular analysis suggested that the altered amino acid is located at the C‐terminus of type I procollagen. Conclusion Our study reveals the pathogenesis of a novel COL1A1 splicing pathogenic variant c.3814+1G>T in a Chinese family with OI I.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here