z-logo
open-access-imgOpen Access
Coexistence of urogenital malformations in a female fetus with de novo 15q24 microdeletion and a literature review
Author(s) -
Liu Yaobin,
Mapow Beth
Publication year - 2020
Publication title -
molecular genetics and genomic medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.765
H-Index - 29
ISSN - 2324-9269
DOI - 10.1002/mgg3.1265
Subject(s) - genitourinary system , uterus didelphys , renal agenesis , polymicrogyria , intellectual disability , agenesis , genetics , non allelic homologous recombination , biology , autopsy , pathology , anatomy , medicine , uterus , kidney , gene , genetic recombination , neuroscience , recombination , epilepsy
Background 15q24 microdeletion is a relatively new syndrome caused by nonallelic homologous recombination (NAHR) between low‐copy repeats (LCRs) in the 15q24 chromosome region. This syndrome is characterized by a spectrum of clinical symptoms including global developmental delay, intellectual disability, facial dysmorphisms, and congenital malformations of the extremities, eye, gastrointestinal tract, genitourinary system, and genitalia. Method Molecular cytogenetic analysis was performed using whole genome single‐nucleotide polymorphism (SNP) microarray analysis. Autopsy examination including gross and microscopic examination were performed. In addition, a thorough review of the literature on 15q24 microdeletion was completed and summarized in table format. Result Molecular cytogenetic analysis revealed a 3.88 MB interstitial deletion within 15q24.1 to 15q24.3 (74,353,735–78,228,485 bp) in our case. Autopsy examination showed congenital malformations within the genitourinary system and genitalia, including left kidney agenesis and uterus didelphys. After thorough literature review, we found a series of midline defects associated with 15q24 microdeletion syndrome. Conclusion We report the first case of coexistence of urogenital abnormalities, including left kidney agenesis and uterus didelphys, with 15q24 microdeletion syndrome, which is also associated with midline defects secondary to abnormal development. Since 15q24 microdeletion syndrome is a relatively new entity, fully characterizing its variation and severity requires additional examination of the genetics, molecular profile and structural and functional abnormalities in affected patients. Due to the limited data in the literature, statistical analysis of abnormalities in each organ system is not possible. However, we can predict that novel genetic pathways involving cell migration, adhesion, apoptosis, and embryo development might be discovered with the advanced study of 15q24 microdeletion syndrome.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here