z-logo
open-access-imgOpen Access
Genetic and clinical analysis in Chinese patients with retinitis pigmentosa caused by EYS mutations
Author(s) -
Sun Yan,
Li Jiankang,
He Wei,
Wang Zhuoshi,
Bai Jinyue,
Xu Ling,
Xing Bo,
Zhang Jianguo,
Wang Lusheng,
Li Wei,
Chen Fang
Publication year - 2020
Publication title -
molecular genetics and genomic medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.765
H-Index - 29
ISSN - 2324-9269
DOI - 10.1002/mgg3.1117
Subject(s) - retinitis pigmentosa , sanger sequencing , frameshift mutation , compound heterozygosity , exome sequencing , proband , medicine , genetics , mutation , genetic testing , ophthalmology , gene , biology
Background Panel‐based targeted exome sequencing was applied to identify the pathogenic variants and genetic characteristics of retinitis pigmentosa (RP) in two Chinese families, and to gain a deeper understanding of the relationship between clinical manifestations and genotypes. Methods A total of 17 subjects, comprising two probands (total patients: four subjects) and their family member, were recruited in this study. All subjects underwent comprehensive ophthalmic examinations and clinical evaluations, and the complete history and medical records were collected according to the standard procedures. All participants were screened using the multigene panel test (Target_Eye_792_V2 chip), and Sanger sequencing was used to confirm the candidate variants. Results Among these two families, a total of three novel mutations in the EYS gene were identified in patients, including a homozygous frameshift mutation c.9252_9253insT detected in two patients in one family, and the compound heterozygous splicesite mutation c.5644+2T>C and frameshift mutation c.1920_1923delTGAG detected in two patients in the another family. All patients in both families had early onset of night blindness and poor visual acuity, and with typical posterior capsule opacification. The mutation co‐segregated within all recruited individuals. In addition, one patient with compound heterozygous mutations was found to have typical blue‐blindness symptoms and detected a previously reported disease‐causing mutation c.235G>A in OPN1SW gene, which caused blue blindness manifestations and was first discovered in patient combined with RP causative genes. Conclusions Panel‐based targeted exome sequencing was used to identify three novel variants of RP causative gene, and we also detected a known pathogenic variants of blue‐blindness causative genes in two patients. Our finding will provide a powerful basis for genetic counseling and enhance our current understanding of the genetics factors for RP families.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here