Open Access
Global precipitation measurement
Author(s) -
Kidd Chris,
Huffman George
Publication year - 2011
Publication title -
meteorological applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.672
H-Index - 59
eISSN - 1469-8080
pISSN - 1350-4827
DOI - 10.1002/met.284
Subject(s) - precipitation , environmental science , quantitative precipitation estimation , satellite , climatology , rain gauge , scale (ratio) , meteorology , geology , geography , cartography , aerospace engineering , engineering
Abstract The quantification of precipitation on a global scale is critical for applications ranging from climate monitoring to water resource management. Conventional observations through surface gauge networks provide the most direct measure of precipitation, although these are very much limited to land areas, with very few in situ measurements over the oceans. Weather radars, although providing a spatial measure of precipitation, are limited in extent and number. Satellite observations offer an unrivalled vantage point to observe precipitation on a global basis. Since precipitation is spatially and temporally highly variable, satellites are able to provide temporal and spatial samples commensurate with many precipitation characteristics. This paper provides an overall review of global precipitation estimation, providing an outline of conventional measurements, the basis of the satellite systems used in the observation of precipitation, and the generation, availability and validation of the derived precipitation products. Finally, future satellite precipitation missions are presented. Copyright © 2011 Royal Meteorological Society