z-logo
open-access-imgOpen Access
Characterizing North Atlantic weather patterns for climate‐optimal aircraft routing
Author(s) -
Irvine Emma A.,
Hoskins Brian J.,
Shine Keith P.,
Lun Robert W.,
Froemming Christine
Publication year - 2013
Publication title -
meteorological applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.672
H-Index - 59
eISSN - 1469-8080
pISSN - 1350-4827
DOI - 10.1002/met.1291
Subject(s) - environmental science , teleconnection , climatology , latitude , jet stream , north atlantic oscillation , range (aeronautics) , stratosphere , precipitation , meteorology , atmospheric sciences , jet (fluid) , geography , geology , physics , materials science , geodesy , composite material , thermodynamics
Daily weather patterns over the North Atlantic are classified into relevant types: typical weather patterns that may characterize the range of climate impacts from aviation in this region, for both summer and winter. The motivation is to provide a set of weather types to facilitate an investigation of climate‐optimal aircraft routing of trans‐Atlantic flights (minimizing the climate impact on a flight‐by‐flight basis). Using the New York to London route as an example, the time‐optimal route times are shown to vary by over 60 min, to take advantage of strong tailwinds or avoid headwinds, and for eastbound routes latitude correlates well with the latitude of the jet stream. The weather patterns are classified by their similarity to the North Atlantic Oscillation and East Atlantic teleconnection patterns. For winter, five types are defined; in summer, when there is less variation in jet latitude, only three types are defined. The types can be characterized by the jet strength and position, and therefore the location of the time‐optimal routes varies by type. Simple proxies for the climate impact of carbon dioxide, ozone, water vapour and contrails are defined, which depend on parameters such as the route time, latitude and season, the time spent flying in the stratosphere, and the distance over which the air is supersaturated with respect to ice. These proxies are then shown to vary between weather types and between eastbound and westbound routes. Copyright © 2012 Royal Meteorological Society

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here