Premium
Agonists and inhibitors of the STING pathway: Potential agents for immunotherapy
Author(s) -
Wu JunJun,
Zhao Lang,
Hu HongGuo,
Li WenHao,
Li YanMei
Publication year - 2020
Publication title -
medicinal research reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.868
H-Index - 130
eISSN - 1098-1128
pISSN - 0198-6325
DOI - 10.1002/med.21649
Subject(s) - sting , stimulator of interferon genes , immunotherapy , cancer immunotherapy , interferon , medicine , immunology , immune system , innate immune system , engineering , aerospace engineering
Since being discovered in 2008, the STING (stimulator of interferon genes) pathway has gradually been recognized as a central and promising target for immunotherapy. The STING pathway can be stimulated by cyclic dinucleotides (CDNs), leading to the type I interferons (IFN) production for immunotherapy for cancer or other diseases. However, the negative charges, hydrophilicity, and instability of CDNs have hindered their further applications. In addition, chronic activation of the STING pathway has been found to be involved in autoimmune diseases as IFN overproduction. Thus, research and development of STING agonists and inhibitors has been a hot field for the treatment of several diseases. The past several years, especially 2018, has seen increasingly rapid advances in this field. Here, this review summarizes the synthesis and modification of CDNs, the identification of nonnucleotide agonists, the recent progress in delivery systems and the medical applications, such as personalized vaccine adjuvants, in detail. In addition, in this review, we summarize the STING inhibitors’ advances from two aspects, covalent, and noncovalent inhibitors.