Premium
Raising the Roof: The Preferential Pharmacological Stimulation of Th1 and Th2 Responses Mediated by NKT Cells
Author(s) -
East James E.,
Kennedy Andrew J.,
Webb Tonya J.
Publication year - 2014
Publication title -
medicinal research reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.868
H-Index - 130
eISSN - 1098-1128
pISSN - 0198-6325
DOI - 10.1002/med.21276
Subject(s) - cd1d , natural killer t cell , biology , cytotoxic t cell , cd1 , immunology , antigen presentation , microbiology and biotechnology , antigen presenting cell , major histocompatibility complex , t cell receptor , acquired immune system , antigen , immune system , t cell , biochemistry , in vitro
Natural killer T (NKT) cells serve as a bridge between the innate and adaptive immune systems, and manipulating their effector functions can have therapeutic significances in the treatment of autoimmunity, transplant biology, infectious disease, and cancer. NKT cells are a subset of T cells that express cell‐surface markers characteristic of both natural killer cells and T cells. These unique immunologic cells have been demonstrated to serve as a link between the innate and adaptive immune systems through their potent cytokine production following the recognition of a range of lipid antigens, mediated through presentation of the major histocompatibility complex (MHC) class I like CD1d molecule, in addition to the NKT cell's cytotoxic capabilities upon activation. Although a number of glycolipid antigens have been shown to complex with CD1d molecules, most notably the marine sponge derived glycolipid alpha‐galactosylceramide (α‐GalCer), there has been debate as to the identity of the endogenous activating lipid presented to the T‐cell receptor (TCR) via the CD1d molecule on antigen‐presenting cells (APCs). This review aims to survey the use of pharmacological agents and subsequent structure–activity relationships (SAR) that have given insight into the binding interaction of glycolipids with both the CD1d molecules as well as the TCR and the subsequent immunologic response of NKT cells. These studies not only elucidate basic binding interactions but also pave the way for future pharmacological modulation of NKT cell responses.