z-logo
Premium
Linking Penetrance and Transcription in DYT‐THAP1 : Insights From a Human iPSC ‐Derived Cortical Model
Author(s) -
Baumann Hauke,
Ott Fabian,
Weber Joachim,
TrilckWinkler Michaela,
Münchau Alexander,
Zittel Simone,
Kostić Vladimir S.,
Kaiser Frank J.,
Klein Christine,
Busch Hauke,
Seibler Philip,
Lohmann Katja
Publication year - 2021
Publication title -
movement disorders
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.352
H-Index - 198
eISSN - 1531-8257
pISSN - 0885-3185
DOI - 10.1002/mds.28506
Subject(s) - penetrance , biology , transcriptome , genetics , transcription factor , induced pluripotent stem cell , gene , downregulation and upregulation , gene expression , phenotype , embryonic stem cell
Background The THAP1 gene encodes a transcription factor, and pathogenic variants cause a form of autosomal dominant, isolated dystonia (DYT‐THAP1) with reduced penetrance. Factors underlying both reduced penetrance and the disease mechanism of DYT‐THAP1 are largely unknown. Methods We performed transcriptome analysis on 29 cortical neuronal precursors derived from human‐induced pluripotent stem cell lines generated from manifesting and nonmanifesting THAP1 mutation carriers and control individuals. Results Whole transcriptome analysis showed a penetrance‐linked signature with expressional changes more pronounced in the group of manifesting (MMCs) than in nonmanifesting mutation carriers (NMCs) when compared to controls. A direct comparison of the transcriptomes in MMCs versus NMCs showed significant upregulation of the DRD4 gene in MMCs. A gene set enrichment analysis demonstrated alterations in various neurotransmitter release cycle pathways, extracellular matrix organization, and deoxyribonucleic acid methylation between MMCs and NMCs. When specifically considering transcription factors, the expression of YY1 and SIX2 differed in MMCs versus NMCs. Further, THAP1 was upregulated in the group of MMCs. Conclusions To our knowledge, this is the first report systematically analyzing reduced penetrance in DYT‐THAP1 in a human model using transcriptomes. Our findings indicate that transcriptional alterations during cortical development influence DYT‐THAP1 pathogenesis and penetrance. We reinforce previously linked pathways including dopamine and eukaryotic translation initiation factor 2 alpha signaling in the pathogenesis of dystonia including DYT‐THAP1 and suggest extracellular matrix organization and deoxyribonucleic acid methylation as mediators of disease protection. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here