z-logo
Premium
Viral‐mediated oligodendroglial alpha‐synuclein expression models multiple system atrophy
Author(s) -
Bassil Fares,
Guerin Paul A.,
Dutheil Nathalie,
Li Qin,
Klugmann Matthias,
Meissner Wassilios G.,
Bezard Erwan,
Fernagut PierreOlivier
Publication year - 2017
Publication title -
movement disorders
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.352
H-Index - 198
eISSN - 1531-8257
pISSN - 0885-3185
DOI - 10.1002/mds.27041
Subject(s) - substantia nigra , striatum , parkinsonism , alpha synuclein , biology , neuroscience , parkinson's disease , medium spiny neuron , dopaminergic , pathology , medicine , dopamine , disease
Background : MSA is a fatal neurodegenerative disorder characterized by a combination of autonomic dysfunction, cerebellar ataxia, and l ‐dopa unresponsive parkinsonism. The hallmark of MSA is the accumulation of α‐synuclein, forming cytoplasmic inclusions in oligodendrocytes. Adeno‐associated viruses allow efficient targeting of disease‐associated genes in selected cellular ensembles and have proven efficient for the neuronal overexpression of α‐synuclein in the substantia nigra in the context of PD. Objectives : We aimed to develop viral‐based models of MSA. Methods : Chimeric viral vectors expressing either human wild‐type α‐synuclein or green fluorescent protein under the control of mouse myelin basic protein were injected in the striatum of rats and monkeys. Rats underwent a longitudinal motor assessment before histopathological analysis at 3 and 6 months. Results : Injection of vectors expressing α‐synuclein in the striatum resulted in >80% oligodendroglial selectivity in rats and >60% in monkeys. Rats developed progressive motor deficits that were l ‐dopa unresponsive when assessed at 6 months. Significant loss of dopaminergic neurons occurred at 3 months, further progressing at 6 months, together with a loss of striatal neurons. Prominent α‐synuclein accumulation, including phosphorylated and proteinase‐K–resistant α‐synuclein, was detected in the striatum and substantia nigra. Conclusions : Viral‐mediated oligodendroglial expression of α‐synuclein allows replicating some of the key features of MSA. This flexible strategy can be used to investigate, in several species, how α‐synuclein accumulation in selected oligodendroglial populations contributes to the pathophysiology of MSA and offers a new framework for preclinical validation of therapeutic strategies. © 2017 International Parkinson and Movement Disorder Society

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here