Premium
Microelectrode targeting of the subthalamic nucleus for deep brain stimulation surgery
Author(s) -
Montgomery Erwin B.
Publication year - 2012
Publication title -
movement disorders
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.352
H-Index - 198
eISSN - 1531-8257
pISSN - 0885-3185
DOI - 10.1002/mds.25000
Subject(s) - subthalamic nucleus , deep brain stimulation , radius , confidence interval , computer science , neuroscience , biomedical engineering , medicine , nuclear medicine , pathology , psychology , parkinson's disease , computer security , disease
Though microelectrode recordings likely increase the risks and costs of DBS, incremental improvement in accuracy may translate into improved outcomes that justify these risks and costs. Clinically based, controlled studies to resolve these issues are problematic. Until such studies are reported, physicians must rely on indirect evidence. The spatial variability of physiologically defined optimal targets, as determined by microelectrode recording (MER), necessary for targeting the STN was calculated. Study of the effectiveness of a MER algorithm was based on the number of penetrations required. The radius of the volume with a 99% chance of including the physiologically defined optimal target, based on 108 cases, was 4.5 mm. This is larger than the estimated radius of the DBS effect, which is variously estimated to be 2 to 3.9 mm. The 99% confidence radius in the plane orthogonal to the lead was 3.2 mm. In 70% of cases, the imaging‐based trajectories corresponded to the physiologically defined optimal target. For the remaining 30% of cases, 70% required only a single additional MER tract. The radii of the 99% confidence volume and area may be larger than the effective radius of stimulation. Surveying within those volumes or areas is therefore necessary to assure that at least 99% of cases will cover the physiologically defined target. The MER algorithm was robust in detecting the physiologically defined optimal target. However, there are significant caveats in interpretation of the data. © 2012 Movement Disorder Society