z-logo
Premium
Blood oxygenation level–dependent activation in basal ganglia nuclei relates to specific symptoms in de novo Parkinson's disease
Author(s) -
Prodoehl Janey,
Spraker Mathew,
Corcos Daniel,
Comella Cynthia,
Vaillancourt David
Publication year - 2010
Publication title -
movement disorders
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.352
H-Index - 198
eISSN - 1531-8257
pISSN - 0885-3185
DOI - 10.1002/mds.23360
Subject(s) - parkinson's disease , basal ganglia , oxygenation , medicine , basal (medicine) , neuroscience , disease , degenerative disease , psychology , central nervous system , insulin
Abstract To aid the development of symptomatic and disease modifying therapies in Parkinson's disease (PD), there is a strong need to identify noninvasive measures of basal ganglia (BG) function that are sensitive to disease severity. This study examines the relation between blood oxygenation level–dependent (BOLD) activation in every nucleus of the BG and symptom‐specific disease severity in early stage de novo PD. BOLD activation measured at 3 T was compared between 20 early stage de novo PD patients and 20 controls during an established precision grip force task. In addition to the BG nuclei, activation in specific thalamic and cortical regions was examined. There were three novel findings. First, there were significant negative correlations between total motor Unified PD Rating Scale and BOLD activation in bilateral caudate, bilateral putamen, contralateral external segment of the globus pallidus, bilateral subthalamic nucleus, contralateral substantia nigra, and thalamus. Second, bradykinesia was the symptom that most consistently predicted BOLD activation in the BG and thalamus. Also, BOLD activation in the contralateral internal globus pallidus was related to tremor. Third, the reduced cortical activity in primary motor cortex and supplementary motor area in de novo PD did not relate to motor symptoms. These findings demonstrate that BOLD activity in nuclei of the BG relates most consistently to bradykinesia and functional magnetic resonance imaging has strong potential to serve as a noninvasive marker for the state of BG function in de novo PD. © 2010 Movement Disorder Society

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here