z-logo
open-access-imgOpen Access
Photopolymerized additive manufacturing materials: Modeling of the printing process, mechanical behavior, and sensitivity analysis
Author(s) -
Cosma Mattia Pancrazio,
Brighenti Roberto
Publication year - 2021
Publication title -
material design & processing communications
Language(s) - English
Resource type - Journals
ISSN - 2577-6576
DOI - 10.1002/mdp2.225
Subject(s) - stereolithography , photopolymer , process (computing) , 3d printing , process engineering , materials science , sensitivity (control systems) , computer science , mechanical engineering , reliability (semiconductor) , chemical process , polymerization , engineering , electronic engineering , polymer , physics , composite material , power (physics) , quantum mechanics , chemical engineering , operating system
Abstract The physical–chemical processes involved in light‐induced polymerization (photopolymerization) are widely exploited in additive manufacturing (AM) technologies such as Stereolithography and Digital Light Processing. The influence of the AM process parameters on the physical properties of manufactured components has been often investigated through empirical methods based on the trial and error approach, that is, by collecting and interpreting a large amount of experimental data. However, when desired physical properties are required, accurate modeling of the liquid–solid conversion is necessary. In this work, in order to determine the properties of the resulting material according to the adopted process setup, we present a multi‐physics approach to model the physical–chemical transformation taking place in photopolymerization. The role played on the final mechanical properties by the laser light intensity and by its moving speed is considered. Further, the influence of the uncertainty of the process parameters is investigated through a sensitivity analysis. The proposed approach is suitable for investigating the reliability of additively manufactured components as well as for their design according to an optimum printing strategy. From the perspective of making innovative functional materials, the proposed multi‐physics model allows tuning the printing process in order to get the desired distribution of mechanical properties.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here