Premium
Potentially functional polymorphisms in DNA repair genes and non‐small‐cell lung cancer survival: A pathway‐based analysis
Author(s) -
Dong Jing,
Hu Zhibin,
Shu Yongqian,
Pan Shiyang,
Chen Wenping,
Wang Yi,
Hu Lingmin,
Jiang Yue,
Dai Juncheng,
Ma Hongxia,
Jin Guangfu,
Shen Hongbing
Publication year - 2012
Publication title -
molecular carcinogenesis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.254
H-Index - 97
eISSN - 1098-2744
pISSN - 0899-1987
DOI - 10.1002/mc.20819
Subject(s) - xrcc1 , biology , ercc1 , single nucleotide polymorphism , lung cancer , dna repair , nucleotide excision repair , oncology , hazard ratio , proportional hazards model , medicine , snp , candidate gene , genetics , gene , bioinformatics , cancer research , confidence interval , genotype
To assess systematically whether potentially functional polymorphisms in DNA repair genes influence the clinical behavior of non‐small‐cell lung cancer (NSCLC), we examined the impact of a comprehensive panel of 218 signal nucleotide polymorphisms (SNP) in 50 candidate DNA repair genes on overall survival of NSCLC in a case‐cohort of 568 lung cancer patients. SNPs associated with lung cancer prognosis primarily mapped to 14 genes in different repair pathways, and 6 SNPs were remained in the final model after multivariate stepwise Cox regression analysis: ATM rs189037; MRE11A rs11020802; ERCC2 rs1799793; MBD4 rs140693; XRCC1 rs25487, and PMS1 rs5742933. In the combined analysis of these 6 SNPs, an increasing number of unfavorable loci was associated with a poorer prognosis ( P for trend: <0.0001) and patients having 2–4 unfavorable loci had a 1.99‐fold elevated risk of death 95% confidence interval (CI) = 1.58–2.50, compared with those carrying 0–1 unfavorable loci, and this elevated risk was more evident among stages I–II patients (hazard ratio = 3.04, 95% CI = 1.86–4.98, P for heterogeneity: 0.07). Furthermore, a significant effect of SNPs in nucleotide excision repair pathway on lung cancer survival was observed among 185 stages III–IV patients treated with platinum‐based chemotherapy without surgical operation: XPC rs2228000 (Ala499Val; P = 0.002) and ERCC1 rs11615 (Asn118Asn; P = 0.012). Our data indicate that potentially functional polymorphisms in DNA repair genes may serve as candidate prognostic markers of clinical outcome of NSCLC. © 2011 Wiley Periodicals, Inc.