z-logo
Premium
Nuclear import of human MLH1, PMS2, and MutLα: Redundancy is the key
Author(s) -
Leong Vivian,
Lorenowicz Jessica,
Kozij Natalie,
Guarné Alba
Publication year - 2009
Publication title -
molecular carcinogenesis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.254
H-Index - 97
eISSN - 1098-2744
pISSN - 0899-1987
DOI - 10.1002/mc.20514
Subject(s) - pms2 , biology , dna mismatch repair , mlh1 , dna repair , microsatellite instability , genetics , microbiology and biotechnology , gene , allele , microsatellite
DNA mismatch repair maintains genomic stability by correcting errors that have escaped polymerase proofreading. Defects on mismatch repair genes lead to an increased mutation rate, microsatellite instability and predisposition to human non‐polyposis colorectal cancer (HNPCC). Human MutLα is a heterodimer formed by the interaction of MLH1 and PMS2 that coordinates a series of key events in mismatch repair. It has been proposed that nuclear import of MutLα may be the first regulatory step on the activation of the mismatch repair pathway. Using confocal microscopy and mismatch repair deficient cells, we have identified the sequence determinants that drive nuclear import of human MLH1, PMS2, and MutLα. Transient transfection of the individual proteins reveals that MLH1 has a bipartite and PMS2 has a single monopartite nuclear localization signal. Although dimerization is not required for nuclear localization, the MutLα heterodimer is imported more efficiently than the MLH1 or PMS2 monomers. Interestingly, the bipartite localization signal of MLH1 can direct import of MutLα even when PMS2 encompasses a mutated localization signal. Hence we conclude that the presence of redundant nuclear localization signals guarantees nuclear transport of MutLα and, consequently, efficient mismatch repair. © 2009 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here