Open Access
Glycolipid composition of the heterocyst envelope of Anabaena sp. PCC 7120 is crucial for diazotrophic growth and relies on the UDP‐galactose 4‐epimerase HgdA
Author(s) -
Shvarev Dmitry,
Nishi Caroli.,
Maldener Iris
Publication year - 2019
Publication title -
microbiologyopen
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.881
H-Index - 36
ISSN - 2045-8827
DOI - 10.1002/mbo3.811
Subject(s) - heterocyst , nitrogenase , glycolipid , diazotroph , biology , biochemistry , anabaena , mutant , cyanobacteria , microbiology and biotechnology , nitrogen fixation , gene , bacteria , genetics
Abstract The nitrogenase complex in the heterocysts of the filamentous freshwater cyanobacterium Anabaena sp. PCC 7120 fixes atmospheric nitrogen to allow diazotrophic growth. The heterocyst cell envelope protects the nitrogenase from oxygen and consists of a polysaccharide and a glycolipid layer that are formed by a complex process involving the recruitment of different proteins. Here, we studied the function of the putative nucleoside‐diphosphate‐sugar epimerase HgdA, which along with HgdB and HgdC is essential for deposition of the glycolipid layer and growth without a combined nitrogen source. Using site‐directed mutagenesis and single homologous recombination approach, we performed a thoroughly functional characterization of HgdA and confirmed that the glycolipid layer of the hgdA mutant heterocyst is aberrant as shown by transmission electron microscopy and chemical analysis. The hgdA gene was expressed during late stages of the heterocyst differentiation. GFP‐tagged HgdA protein localized inside the heterocysts. The purified HgdA protein had UDP‐galactose 4‐epimerase activity in vitro. This enzyme could be responsible for synthesis of heterocyst‐specific glycolipid precursors, which could be transported over the cell wall by the ABC transporter components HgdB/HgdC.