
Reductive evolution in outer membrane protein biogenesis has not compromised cell surface complexity in Helicobacter pylori
Author(s) -
Webb Chaille T.,
Chandrapala Dilini,
Oslan Siti Nurbaya,
Bamert Rebecca S.,
Grinter Rhys D.,
Dunstan Rhys A.,
Gorrell Rebecca J.,
Song Jiangning,
Strugnell Richard A.,
Lithgow Trevor,
Kwok Terry
Publication year - 2017
Publication title -
microbiologyopen
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.881
H-Index - 36
ISSN - 2045-8827
DOI - 10.1002/mbo3.513
Subject(s) - bacterial outer membrane , bama , helicobacter pylori , biogenesis , biology , proteome , membrane protein , pathogen , microbiology and biotechnology , computational biology , membrane , biochemistry , genetics , gene , escherichia coli
Helicobacter pylori is a gram‐negative bacterial pathogen that chronically inhabits the human stomach. To survive and maintain advantage, it has evolved unique host–pathogen interactions mediated by Helicobacter ‐specific proteins in the bacterial outer membrane. These outer membrane proteins ( OMP s) are anchored to the cell surface via a C‐terminal β‐barrel domain, which requires their assembly by the β‐barrel assembly machinery ( BAM ). Here we have assessed the complexity of the OMP C‐terminal β‐barrel domains employed by H. pylori, and characterized the H. pylori BAM complex. Around 50 Helicobacter ‐specific OMP s were assessed with predictive structural algorithms. The data suggest that H. pylori utilizes a unique β‐barrel architecture that might constitute H. pylori ‐specific Type V secretions system. The structural and functional diversity in these proteins is encompassed by their extramembrane domains. Bioinformatic and biochemical characterization suggests that the low β‐barrel‐complexity requires only minimalist assembly machinery. The H. pylori proteins BamA and BamD associate to form a BAM complex, with features of BamA enabling an oligomerization that might represent a mechanism by which a minimalist BAM complex forms a larger, sophisticated machinery capable of servicing the outer membrane proteome of H. pylori .