Open Access
Characterization of sediment bacterial communities in plain lakes with different trophic statuses
Author(s) -
Huang Wei,
Chen Xing,
Jiang Xia,
Zheng Binghui
Publication year - 2017
Publication title -
microbiologyopen
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.881
H-Index - 36
ISSN - 2045-8827
DOI - 10.1002/mbo3.503
Subject(s) - eutrophication , trophic level , acidobacteria , ecology , sediment , lake ecosystem , environmental science , betaproteobacteria , gammaproteobacteria , proteobacteria , biology , actinobacteria , ecosystem , nutrient , 16s ribosomal rna , paleontology , genetics , bacteria
Abstract Sediment microbial communities play an important role in lake trophic status. This study determined millions of Illumina reads (16S rRNA gene amplicons) to compare the bacterial communities in moderately eutrophic, lightly eutrophic, and moderately trophic regions using a technically consistent approach. The results indicated that the sediments from moderately eutrophic and trophic lake had the higher bacterial diversity than lightly eutrophic lake. Proteobacteria was the most abundant phylum (22.7%–86.2%) across samples from three regions. The sediments from moderately eutrophic region were enriched with Chloroflexi and Nitrospirae . Alphaproteobacteria , Gammaproteobacteria , and Bacteroidetes were enriched in the sediments from lightly eutrophic lake. The sediments from moderately trophic lake contained a high abundance of Acidobacteria and Deltaproteobacteria because of the low pH of the sediments in this lake. In moderately eutrophic region, Nitrospira held an absolute predominance, while Lysobacter and Flavobacterium were the most predominant genera in lightly eutrophic region. Temperature was the main factor influencing the bacterial community in the three lakes. The bacterial communities in the sediment samples obtained from moderately eutrophic lake were associated with nutrient concentration, whereas organic matter and total nitrogen contents mainly influenced the bacterial communities in sediments obtained from lightly eutrophic lake and moderately trophic lake, respectively.