z-logo
open-access-imgOpen Access
Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage
Author(s) -
Santo Christophe Espírito,
Quaranta Davide,
Grass Gregor
Publication year - 2012
Publication title -
microbiologyopen
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.881
H-Index - 36
ISSN - 2045-8827
DOI - 10.1002/mbo3.2
Subject(s) - copper , metal , staphylococcus haemolyticus , antimicrobial , dna damage , membrane , chemistry , microbiology and biotechnology , bacteria , staphylococcus aureus , materials science , staphylococcus , metallurgy , dna , biology , biochemistry , genetics
Recently, copper (Cu) in its metallic form has regained interest for its antimicrobial properties. Use of metallic Cu surfaces in worldwide hospital trials resulted in remarkable reductions in surface contaminations. Yet, our understanding of why microbes are killed upon contact to the metal is still limited and different modes of action have been proposed. This knowledge, however, is crucial for sustained use of such surfaces in hospitals and other hygiene‐sensitive areas. Here, we report on the molecular mechanisms by which the Gram‐positive Staphylococcus haemolyticus is inactivated by metallic Cu. Staphylococcus haemolyticus was killed within minutes on Cu but not on stainless steel demonstrating the antimicrobial efficacy of metallic Cu. Inductively coupled plasma mass spectroscopy (ICP‐MS) analysis and in vivo staining with Coppersensor‐1 indicated that cells accumulated large amounts of Cu ions from metallic Cu surfaces contributing to lethal damage. Mutation rates of Cu‐ or steel‐exposed cells were similarly low. Instead, live/dead staining indicated cell membrane damage in Cu‐ but not steel‐exposed cells. These findings support a model of the cellular targets of metallic Cu toxicity in bacteria, which suggests that metallic Cu is not genotoxic and does not kill via DNA damage. In contrast, membranes constitute the likely Achilles’ heel of Cu surface‐exposed cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here