z-logo
Premium
Einfluss des Lösungsglühens und der Heißextrusion auf das in vitro Korrosionsverhalten von Mg−2Y−1Zn−0,4Zr−0,3Sr‐Legierungen als potenziell biologisch abbaubaren Werkstoff
Author(s) -
Huang T.,
Yang L.,
Xu C.,
Zhang J.,
Song Zhenlun,
Xu C.,
Zhang Q.,
Li F.,
Jia Q.,
Kuan J.,
Zhang Z.,
Wu X.,
Wang Z.
Publication year - 2020
Publication title -
materialwissenschaft und werkstofftechnik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.285
H-Index - 38
eISSN - 1521-4052
pISSN - 0933-5137
DOI - 10.1002/mawe.202000045
Subject(s) - corrosion , extrusion , materials science , microstructure , galvanic corrosion , metallurgy , alloy , diffractometer , scanning electron microscope , dielectric spectroscopy , galvanic cell , electrochemistry , chemical engineering , composite material , chemistry , electrode , engineering
In this work, the influence of solution heat treatment and hot extrusion on the microstructure and corrosion behavior of as‐cast Mg−2Y−1Zn−0.4Zr−0.3Sr alloys are systematically investigated via X‐ray diffractometer, scanning electron microscope coupled with energy‐dispersive X‐ray spectroscopy, electrochemical testing, and mass loss testing. The as‐cast alloy comprises α‐Mg matrix and Mn 3 Y 2 Zn 3 (W‐phase). Solution heat treatment and hot extrusion exert a conspicuous influence on the corrosion behavior of Mg−2Y−1Zn−0.4Zr−0.3Sr alloys through microstructure transformation. Both methods can remarkably improve corrosion resistance, and the as‐extruded alloys exhibit an optimal corrosion resistance of 0.0432 mg ⋅ cm −2  ⋅ h −1 via mass loss testing. The three alloys exhibit a similar corrosion mechanism, which is based on galvanic corrosion. In the later stage of corrosion, a three‐tier corrosion layer structure is formed. In combination with an array of analytical methods, the corrosion mechanisms of the three alloys are described in detail.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here