Premium
Einfluss des Lösungsglühens und der Heißextrusion auf das in vitro Korrosionsverhalten von Mg−2Y−1Zn−0,4Zr−0,3Sr‐Legierungen als potenziell biologisch abbaubaren Werkstoff
Author(s) -
Huang T.,
Yang L.,
Xu C.,
Zhang J.,
Song Zhenlun,
Xu C.,
Zhang Q.,
Li F.,
Jia Q.,
Kuan J.,
Zhang Z.,
Wu X.,
Wang Z.
Publication year - 2020
Publication title -
materialwissenschaft und werkstofftechnik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.285
H-Index - 38
eISSN - 1521-4052
pISSN - 0933-5137
DOI - 10.1002/mawe.202000045
Subject(s) - corrosion , extrusion , materials science , microstructure , galvanic corrosion , metallurgy , alloy , diffractometer , scanning electron microscope , dielectric spectroscopy , galvanic cell , electrochemistry , chemical engineering , composite material , chemistry , electrode , engineering
In this work, the influence of solution heat treatment and hot extrusion on the microstructure and corrosion behavior of as‐cast Mg−2Y−1Zn−0.4Zr−0.3Sr alloys are systematically investigated via X‐ray diffractometer, scanning electron microscope coupled with energy‐dispersive X‐ray spectroscopy, electrochemical testing, and mass loss testing. The as‐cast alloy comprises α‐Mg matrix and Mn 3 Y 2 Zn 3 (W‐phase). Solution heat treatment and hot extrusion exert a conspicuous influence on the corrosion behavior of Mg−2Y−1Zn−0.4Zr−0.3Sr alloys through microstructure transformation. Both methods can remarkably improve corrosion resistance, and the as‐extruded alloys exhibit an optimal corrosion resistance of 0.0432 mg ⋅ cm −2 ⋅ h −1 via mass loss testing. The three alloys exhibit a similar corrosion mechanism, which is based on galvanic corrosion. In the later stage of corrosion, a three‐tier corrosion layer structure is formed. In combination with an array of analytical methods, the corrosion mechanisms of the three alloys are described in detail.