Premium
Magnesiumzugabe in Kupfer‐Chrom‐Legierungen: Kornverfeinerung von alterungsbedingten Ausscheidungen und Verbesserung der mechanischen Eigenschaften
Author(s) -
Wu S.J.,
Wang J.F.,
Chen H.M.,
Wang H.,
Zhang J.B.,
Yang B.
Publication year - 2019
Publication title -
materialwissenschaft und werkstofftechnik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.285
H-Index - 38
eISSN - 1521-4052
pISSN - 0933-5137
DOI - 10.1002/mawe.201800059
Subject(s) - magnesium , materials science , precipitation , metallurgy , chromium , copper , magnesium alloy , alloy , phase (matter) , casting , diffusion , chemistry , thermodynamics , physics , organic chemistry , meteorology
Herein, we demonstrate the synthesis of copper‐chromium and copper‐ chromium‐magnesium alloys by melting and casting process and explore the effect of the magnesium addition on mechanical and electrical properties of the alloys. This article focuses on the variation of the precipitation sequence and the decrease of strengthening phase sizes induced by the addition of trace magnesium element. The results show that magnesium element has little effect on the hardness of copper‐chromium alloy, but it significantly improves the hardness of the aging alloy and maintains high conductivity. The addition of magnesium element inhibits the growth and structural transformation of the precipitated phase. The refinement impact of magnesium addition on precipitated phase and change in alloy precipitation sequence may be the main reasons for the high hardness of copper‐chromium‐ magnesium alloy. In addition, the magnesium addition shows a significant refinement effect on small size precipitation phase, but it does not present the same refinement effect on large size precipitation phase. This attributes to the presence of a semi‐coherent interface between the matrix and the large size of precipitates, which provides the dislocation‐based diffusion channels for high‐rate chromium diffusion and promotes the precipitate growth.