Premium
Engineering approaches to multiaxial and non‐proportional fatigue of notched components
Author(s) -
Riess C.,
Hiese W.,
Obermayr M.,
Vormwald M.
Publication year - 2018
Publication title -
materialwissenschaft und werkstofftechnik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.285
H-Index - 38
eISSN - 1521-4052
pISSN - 0933-5137
DOI - 10.1002/mawe.201700188
Subject(s) - structural engineering , hardening (computing) , materials science , amplitude , engineering , physics , composite material , layer (electronics) , quantum mechanics
Many components in engineering applications are subjected to multiple and uncorrelated loads during service‐life. Thus, multiaxial stress states with rotating principal axis may occur. For this special case of multiaxial and non‐proportional stresses the results of many fatigue assessment methods which are used in the industrial practice are of poor quality. Fatigue lifetimes of shoulder shafts (quenched and tempered steel) are estimated on the basis of the extended short crack model in combination with a multiaxial notch approximation. This approach shows a high accuracy but the precise modelling of non‐proportional hardening effects requires a complex plasticity model. Therefore, a simplified approach for considering non‐proportional hardening is introduced. Thus, the calculation method gets applicable in the engineering practice. Results are compared to well‐established engineering approaches. Furthermore, new component tests on die‐cast housings with two load channels under constant and variable amplitude loading are presented and discussed. The loads are applied in‐phase (proportional) as well as out‐of‐phase, which results in a high non‐proportional stress path at the crack initiation site. The effects of multiaxial and non‐proportional stress states seem to play a minor role in the fatigue assessment of die‐cast housings.