Premium
Hybrid simulation of laser deep penetration welding
Author(s) -
Schöler C.,
Haeusler A.,
Karyofylli V.,
Behr M.,
Schulz W.,
Gillner A.,
Niessen M.
Publication year - 2017
Publication title -
materialwissenschaft und werkstofftechnik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.285
H-Index - 38
eISSN - 1521-4052
pISSN - 0933-5137
DOI - 10.1002/mawe.201700164
Subject(s) - keyhole , welding , materials science , laser beam welding , finite element method , thermal , laser , penetration depth , boundary value problem , mechanical engineering , composite material , mechanics , structural engineering , optics , engineering , mathematics , mathematical analysis , physics , thermodynamics
In laser deep penetration welding, the knowledge on the temperature history of the material is of great interest for the assessment of the quality properties of the weld. For this purpose a hybrid process model that enables the fast calculation of temperature distributions as a function of process parameters is applied. The interaction between laser and material is taken into account by a reduced keyhole model, which exploits a hierarchy in the spatial dimensions occurring at high feed rates. The resulting shape of a stationary keyhole is introduced as a Dirichlet boundary into a thermal finite element simulation in which it is moved through the workpiece according to the process control of the laser beam. The boundary is mathematically described by a level set function and immersed in a fixed computational mesh. The Dirichlet boundary condition is imposed using an embedded boundary method. The calculated temperature distributions are evaluated by means of bead on plate welds conducted in 0.9 mm thick sheets of 1.4301 (AISI 304) stainless steel.