Premium
Effective thermal properties of an isotactic polypropylene (α‐iPP) injection moulded part by a multiscale approach
Author(s) -
Laschet G.,
Apel M.,
Wipperfürth J.,
Hopmann C.,
Spekowius M.,
Spina R.
Publication year - 2017
Publication title -
materialwissenschaft und werkstofftechnik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.285
H-Index - 38
eISSN - 1521-4052
pISSN - 0933-5137
DOI - 10.1002/mawe.201700148
Subject(s) - homogenization (climate) , materials science , tacticity , composite material , anisotropy , thermal , thermal conductivity , microstructure , polypropylene , heat transfer , mechanics , thermodynamics , polymer , optics , physics , biodiversity , ecology , polymerization , biology
In injection moulding processes, the melt undergoes a complex deformation and cooling history, which results in an inhomogeneous distribution of crystalline superstructures in semi‐crystalline thermoplastics, which significantly influences their final mechanical and thermal properties. In this paper we describe the determination of local effective thermal properties of a moulded part via a multiscale simulation approach. First a macroscopic filling and heat transfer simulation is performed followed by a microstructure evolution calculation on the micro‐scale. Then, the effective thermal properties are derived via a two‐level homogenization scheme. The results show that the effective thermal conductivity is anisotropic and that it varies asymmetrically over the analysed plate sections.