z-logo
Premium
A comparative study assessing the wear behaviour of different ceramic die materials during superplastic forming
Author(s) -
GomezGallegos A. A.,
Farrell M.,
Zuelli N.,
Staiano A.
Publication year - 2017
Publication title -
materialwissenschaft und werkstofftechnik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.285
H-Index - 38
eISSN - 1521-4052
pISSN - 0933-5137
DOI - 10.1002/mawe.201700044
Subject(s) - superplasticity , die (integrated circuit) , ceramic , materials science , metallurgy , composite material , microstructure , nanotechnology
Superplastic forming is an advanced manufacturing process where metallic sheets are heated to their superplastic region to be then blow formed within a die set. The process allows for the forming of complex parts but it is typically restricted to low volume production and high value pieces. Despite their brittle nature, ceramic dies are a developing technology for superplastic forming as they offer lower production costs and shorter lead times than conventional metallic dies, thus reducing process costs. This work presents a method to assess ceramic die wear by means of a novel test rig developed a at the Advance Forming Research Centre of the University of Strathclyde, Scotland, UK where the superplastic forming die‐part interaction can be replicated at laboratory scale. Controllable normal load tests at standard superplastic forming conditions on three different reinforced ceramic materials are carried out with a view to understanding their wear mechanisms and to ultimately identify methods to improve their wear resistance.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here