Premium
Investigation the effect of crystal orientation of nickel‐based single crystal superalloys on bending creep tests
Author(s) -
Wen S.,
Zeng X.,
Kang Z.,
Yue Z.
Publication year - 2014
Publication title -
materialwissenschaft und werkstofftechnik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.285
H-Index - 38
eISSN - 1521-4052
pISSN - 0933-5137
DOI - 10.1002/mawe.201400195
Subject(s) - creep , materials science , superalloy , single crystal , ultimate tensile strength , bending , metallurgy , composite material , stress (linguistics) , crystallography , microstructure , chemistry , linguistics , philosophy
The relationship between the three points bending creep test and the uni‐axial creep test on the single crystal superalloy was investigated by using crystal plasticity slip theory with a three‐dimensional (3D) finite element model. The purpose of the present work is to build the relationship between bending creep and conventional uni‐axial tensile creep in determining crystallographic creep parameters for face centered cubic (FCC) nickel‐based single crystal superalloys. To this aim, the bending creep performed on [001]‐, [011]‐, and [111]‐oriented nickel‐based single crystal superalloys were respectively investigated, and the data was compared with those obtained with uni‐axial tensile creep counterparts. It shows that the determination of crystallographic creep stress exponent is independent of crystallographic orientations, and the results agree reasonably well between bending creep test and uni‐axial tensile creep test. The findings may shed some light on understanding of the crystal structures and its time‐dependent deformation mechanisms with the bending creep method.