Premium
Hyperhydrophile raue Oberflächen und imaginäre Kontaktwinkel
Author(s) -
Jennissen H. P.
Publication year - 2012
Publication title -
materialwissenschaft und werkstofftechnik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.285
H-Index - 38
eISSN - 1521-4052
pISSN - 0933-5137
DOI - 10.1002/mawe.201200961
Subject(s) - wetting , contact angle , wetting transition , superhydrophilicity , hysteresis , the imaginary , surface (topology) , materials science , mechanics , chemistry , nanotechnology , composite material , geometry , physics , condensed matter physics , mathematics , psychology , psychotherapist
The complete wetting of rough surfaces is only poorly understood, since the underlying phenomena can neither be described by the Cassie‐Baxter nor the Wenzel equation. An experimental accessiblility by the sessile drop method is also very limited. The term “superhydrophilicity” was an attempt to understand the wetting of rough surfaces, but a clear definition is still forthcoming, mainly because non‐superhydrophilic surfaces can also display a contact angle of zero. Since the Wilhelmy balance is based on force measurements, it offers a technology for obtaining signals during the whole wetting process. We have obtained evidence that additional forces occur during the complete wetting of rough surfaces and that mathematically contact angles for a hydrophilicity beyond the contact angle of zero can be defined by imaginary numbers. A hydrophilized TPS‐surface obtained by chemical wettability switching from a superhydrophobic surface has been previously characterized by dynamic imaginary contact angles of 20i°–21i° and near‐zero hysteresis. Here an extremely high wetting rate is demonstrated reaching a virtual imaginary contact angle of Θ V,Adv > 3.5i° in less than 210 ms. For a rough surface displaying imaginary contact angles and extremely high wetting rates we suggest the term hyperhydrophilicity. Although, as will be shown, the physical basis of imaginary contact angles is still unclear, they significantly expand our methodology, the range of wettability measurements and the tools for analyzing rough hydrophilic surfaces. They may also form the basis for a new generation of rationally constructed medicinal surfaces.