Premium
Einfluss verschiedener Parameter auf die Trennung von Einschlüssen von Magnesiumlegierungen mittels Ultraschall
Author(s) -
Shao Z.W.,
Le Q.C.,
Zhang Z.Q.,
Cui J.Z.
Publication year - 2012
Publication title -
materialwissenschaft und werkstofftechnik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.285
H-Index - 38
eISSN - 1521-4052
pISSN - 0933-5137
DOI - 10.1002/mawe.201200843
Subject(s) - ultrasonic sensor , agglomerate , materials science , magnesium alloy , alloy , economies of agglomeration , magnesium , particle (ecology) , composite material , metallurgy , acoustics , geology , chemical engineering , oceanography , physics , engineering
The acoustic radiation force generated by ultrasonic standing wave in the flow media can make solid particles suspending in the liquid agglomerate at the nodal planes of the waves and then realize their separation, which is also known as ultrasonic agglomeration in chemical industry. In this paper, ultrasonic waves were employed to promote and accelerate the separation of inclusions from magnesium alloy melt, and the effect of acoustic radiation forces on oxide inclusions removal from magnesium alloy melts were studied by numerical calculation. The agglomeration behavior of the inclusions was also obtained by solving the equations of motion for inclusions. Finally, parametric studies, usually very helpful for continued optimization and design efforts, were carried out to evaluate the effects of various parameters such as ultrasonic power, ultrasonic treating time, particle size and density difference between particle and melt on the inclusions distribution. The results indicate that when a moderate ultrasonic power was applied, most of inclusions could agglomerate at wave nodes in a short time which finally enhanced and accelerated the separation of inclusions from magnesium alloy melt.