Premium
Ionen Adsorption von mit Ethanolamin modifizierten Mikro‐ und Nano‐Acylfasern
Author(s) -
Tabarzadi M.,
Abdouss M.,
Hasani S. A.,
Shoushtary A. M.
Publication year - 2010
Publication title -
materialwissenschaft und werkstofftechnik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.285
H-Index - 38
eISSN - 1521-4052
pISSN - 0933-5137
DOI - 10.1002/mawe.201000575
Subject(s) - polyacrylonitrile , thermogravimetric analysis , fiber , adsorption , electrospinning , fourier transform infrared spectroscopy , materials science , scanning electron microscope , ethanolamine , formamide , nuclear chemistry , chemical engineering , polymer chemistry , chemistry , composite material , organic chemistry , polymer , engineering
Micro and nano polyacrylonitrile fibers were modified to polyacrylonitrile‐monoethanolamine (PAN‐MEA) through reaction PAN with ethanolamine. The modified PAN fiber was prepared by conversion nitrile groups into hydroxyle groups using ethanolamine solution with different concentration under refluxing at 91°C. Modified raw acrylic fibers (RAF) with submicrometer diameters ranging from 120 to 300 nm were produced using electrospinning in N,N‐dimethyl formamide (DMF). The PAN‐MEA micro and nano fibers were examined as chelating material in a series of batch adsorption experiments for removal of Cu (II), Pb (II) and Ni (II) ions. The fiber structure has been investigated by different experimental techniques of characterization such as Fourier transform infrared spectroscopy (FT‐IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Also, the physical and mechanical properties has been investigated in this study. Nano fibers show adsorption metal ions more than the usual fiber because of high ratio of surface to mass.