Premium
Thermal conductivity issues of EB‐PVD thermal barrier coatings
Author(s) -
Schulz U.,
RätzerScheibe H.J.,
Saruhan B.,
Renteria A. F.
Publication year - 2007
Publication title -
materialwissenschaft und werkstofftechnik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.285
H-Index - 38
eISSN - 1521-4052
pISSN - 0933-5137
DOI - 10.1002/mawe.200700189
Subject(s) - thermal barrier coating , materials science , thermal conductivity , microstructure , laser flash analysis , composite material , ceramic
The thermal conductivity of electron‐beam physical vapor deposited (EB‐PVD) thermal barrier coatings (TBCs) was investigated by the Laser Flash technique. Sample type and methodology of data analyses as well as atmosphere during the measurement have some influence on the data. A large variation of the thermal conductivity was found by changes in TBC microstructure. Exposure at high temperature caused sintering of the porous microstructure that finally increased thermal conductivity up to 30 %. EB‐PVD TBCs show a distinct thickness dependence of the thermal conductivity due to the anisotropic microstructure in thickness direction. Thin TBCs had a 20 % lower thermal conductivity than thick coatings. New compositions of the ceramic top layer offer the largest potential to lower thermal conductivity. Values down to 0.8W/(mK) have been already demonstrated with virgin coatings of pyrochlore compositions.