z-logo
Premium
Sol‐gel derived C‐SiC composites for re‐entry structures
Author(s) -
Haruvy Y.,
Liedtke V.
Publication year - 2003
Publication title -
materialwissenschaft und werkstofftechnik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.285
H-Index - 38
eISSN - 1521-4052
pISSN - 0933-5137
DOI - 10.1002/mawe.200390068
Subject(s) - materials science , composite material , silicon carbide , composite number , silane , ceramic matrix composite , pyrolysis , ceramic , sol gel , thermal stability , carbon fibers , inert gas , reinforced carbon–carbon , chemical engineering , nanotechnology , engineering
Composites of carbon fibers, fabrics, or their precursors as reinforcement, and sol‐gel‐derived silicon carbide as matrix, have been developed, aiming at high‐temperature stable ceramics that can be utilized for re‐entry structures. These composites are produced via the sol‐gel process, starting with a sol‐gel reaction of a mixture of silane precursors. The sol‐gel‐derived resin is cast onto the reinforcement fibers/fabrics mat (carbon or its precursors) to produce a ‘green’ composite that is being cured. The ‘green’ composite is converted into a C‐SiC composite via a gradual heat‐pressure process under inert atmosphere, during which the organic substituents on the silicon atoms undergo internal oxidative pyrolysis via the schematic reaction: (SiRO 3/2 ) n → SiC + CO 2 + H 2 O The composition of the resultant silicon‐oxi‐carbide is tailorable via modifying the composition of the sol‐gel reactants. The reinforcement, when made of carbon precursors, is converted into carbon during the heat‐and‐pressure processing as well. The C‐SiC composites thus derived exhibit superior thermal stability and comparable thermal conductivity, combined with good mechanical strength features and failure resistance, which render them greatly applicable for re‐entry shielding, heat‐exchange pipes, and the like.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here