Premium
Relation between Polymer Conformational Structure and Dynamics in Linear and Ring Polyethylene Blends
Author(s) -
Jeong Cheol,
Douglas Jack F.
Publication year - 2017
Publication title -
macromolecular theory and simulations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.37
H-Index - 56
eISSN - 1521-3919
pISSN - 1022-1344
DOI - 10.1002/mats.201700045
Subject(s) - polymer , molecular dynamics , ring (chemistry) , materials science , swelling , excluded volume , linear low density polyethylene , polyethylene , polymer chemistry , thermodynamics , solvent , chemical physics , chemistry , computational chemistry , composite material , organic chemistry , physics
Atomistic molecular dynamics simulations of ring‐linear polyethylene blends are employed to understand the relationship between chain conformational structure and the melt dynamics of these blends. As observed in previous studies, this study confirms that ring polymers in pure melts do not exhibit screened excluded volume interactions, contrary to linear polymers. Moreover, the average molecular shapes of the rings are quite distinct from both swollen and ideal ring polymers under theta conditions, and instead rather resemble branched polymers with screened binary excluded volume interactions, e.g., percolation clusters. Upon adding linear chains to a melt of pure rings, we find significant swelling of the rings and a corresponding shape change that is qualitatively similar to dissolving rings in a small molecule good solvent. This swelling, arising from altered self‐excluded volume interactions, translates into a large decrease in ring diffusivity, an effect that becomes more amplified when the polymer melt is entangled.