z-logo
Premium
Theoretical Study of the Effects of Templated Materials on Aggregate Formation
Author(s) -
Chen Yong,
Shew ChwenYang,
Gbemudu Chukwuso,
Chauhan Bhanu P. S.
Publication year - 2003
Publication title -
macromolecular theory and simulations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.37
H-Index - 56
eISSN - 1521-3919
pISSN - 1022-1344
DOI - 10.1002/mats.200350031
Subject(s) - polymer , monomer , materials science , aggregate (composite) , monte carlo method , chemical physics , chemical engineering , nanotechnology , chemistry , composite material , statistics , mathematics , engineering
Summary: We have conducted Monte Carlo simulations to investigate a greatly simplified model for a blend composed of templated materials (polymers or monomers), smaller reacting particles and solvents on a two‐dimensional lattice. In the simulations, we compute the mean chain conformation of flexible templated polymers, and the distribution of the number of adjacent reacting particles aligned along the same axis to rationalize how templated materials affect the physical aggregation of smaller particles in a blend. We first examine the effects of the effective interactions between templated materials and smaller reacting particles. For repulsive interactions, flexible templated polymers tend to contract to reduce repulsions arising from smaller reacting particles, but for attractive interactions, mean chain dimension increases to maximize attraction. When templated material composition is increased, the conformational deformation of templated polymers becomes more pronounced. Moreover, in the presence of attractive interactions, reacting particles are more dispersed in the blend. In contrast, repulsive interactions increase the probability of aggregation of reacting particles. Also, our findings show that templated monomers (without chain connectivity) interact with reacting particles more effectively than with templated polymers due to the greater interacting area per monomer, which enhances the dispersion and segregation of reacting particles in the blend due to the attractive and repulsive interaction, respectively. In addition, as templated material composition is increased, the probability of forming a larger aggregate decreases. This simple model allows us to elucidate the role of templated materials on the physical aggregation of smaller particles in a blend.Probability distribution P ( m ) of finding m adjacent reacting particles along the same axis in the presence of templated polymers (open symbols) and templated monomers (solid symbols) for different monomer‐reacting particle ratio, 1:3 (□/▪), 1:1 (○/•) and 3:1 (▵/▴):.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here