Premium
Using Monte Carlo simulations and self‐consistent field theory to design interfacially active copolymers
Author(s) -
Balazs Anna C.,
Gersappe Dilip,
Israels Rafel,
Fasolka Michael
Publication year - 1995
Publication title -
macromolecular theory and simulations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.37
H-Index - 56
eISSN - 1521-3919
pISSN - 1022-1344
DOI - 10.1002/mats.1995.040040401
Subject(s) - copolymer , monte carlo method , materials science , polymer , chemical physics , nanotechnology , composite material , physics , mathematics , statistics
We use both Monte Carlo computer simulations and numerical self‐consistent field lattice calculations to determine the behavior of copolymers at penetrable and impenetrable interfaces. These computational techniques are useful as “design tools”: they allow us to systemically vary the copolymer architecture, determine optimal structures for specific applications, and establish guidelines for fabricating copolymers that yield the desired interfacial properties. We illustrate this principle with three different examples. In the first study, we combine the techniques to design copolymer compatibilizers that enhance the strength of immiscible polymer blends. These copolymers contain teeth that associate across the penetrable interface between the phase‐separated regions and form a “molecular velcro” that effectively binds the regions together. In the case of impenetrable interfaces, we determine how the copolymer sequence distribution affects the structure of a layer of copolymers grafted onto a solid surface. The results indicate how to control the morphology of the layer and the surface properties of the substrate, by varying the microstructure of the grafted copolymers. Finally, we design a polymer channel that “opens” and “closes” in response to changes in the pH and quality of the surrounding solvent. The channel is formed from polyacid chains that are anchored onto a solid surface. Due to these properties, the system can be used for controlled release or sensor devices.