z-logo
Premium
The kinetics of free radical polymerizing systems at low conversion, 1. On the rate determining step of the bimolecular termination reaction
Author(s) -
Russell Gregory T.
Publication year - 1995
Publication title -
macromolecular theory and simulations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.37
H-Index - 56
eISSN - 1521-3919
pISSN - 1022-1344
DOI - 10.1002/mats.1995.040040308
Subject(s) - chain termination , chemistry , polymerization , thermodynamics , chain (unit) , radical polymerization , polymer , diffusion , statistical physics , chemical physics , physics , quantum mechanics , organic chemistry
Using a styrene bulk system as a model, this paper examines rates of termination at very low conversions in bulk and solution polymerizations. No definitive answer to the question of what determines such rates of termination is arrived at. Indeed, it is argued that on the basis of existing kinetic information, no such definitive answer is possible. However several things may be said with conviction. To begin with, it is rigorously shown that low conversion rates of termination cannot be explained by assuming that all radical chain end encounters result in termination, and then using center‐of‐mass diffusion coefficients of polymer in free solution to calculate rates of chain end encounter. However this does not mean that rates of center‐of‐mass diffusion do not determine rates of low conversion termination, as is shown; the idea that it may be the case that not all chain end encounters result in termination, this a manifestation of a spin multiplicity effect, is especially worthy of mention. It is also possible to explain low conversion rates of termination, as has traditionally been done, in terms of chain end motions being hindered by the presence of another polymer chain. However in concentrating on interactions between overlapping long chain macroradical coils, this traditional picture is certainly inaccurate, for it is shown that most termination interactions must involve at least one radical of shorter than expected degree of polymerization. This has the important consequence that an understanding of overall rates of dilute solution termination must be founded on an understanding of the diffusional behavior of the ends of short and intermediate length polymer chains.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here