z-logo
Premium
Hydrostatic Extrusion of Poly(L‐Lactide)
Author(s) -
Jin Fengzhe,
Moon SungIl,
Tsutsumi Sadami,
Hyon SuongHyu
Publication year - 2005
Publication title -
macromolecular symposia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.257
H-Index - 76
eISSN - 1521-3900
pISSN - 1022-1360
DOI - 10.1002/masy.200550609
Subject(s) - extrusion , materials science , composite material , extrusion moulding
Abstract Poly‐L‐Lactide(PLLA) has been used as a bone fracture fixation material for several years. However, its mechanical properties are still not satisfied. To improve its mechanical properties, we examined the hydrostatic extrusion procedure on the PLLA rods made by Injection Molding process. The extrusion ratio was adjusted to 3, 6, 9, and 12. The molecular weight of the PLLA decreased from 260,000 to 200,000 after injection molding process, but it did not change during the hydrostatic extrusion procedure. The melting point of PLLA hydrostatic extrusion products were increased with the extrusion ratio, but the increment was not obviouse. Extrusion products having low extrusion ratio had α‐form crystal in them, extrusion products having high extrusion ratio had both of α and β‐form crystall in them. At extrusion temperature of 145°C, PLLA rods showed the best flowing trends in the pressure medium of PEG 400. Extrusion temperature is placed in the range of crystalline transition temperature and melting point of PLLA. At extrusion ratio 9∼12, the extrusion products showed the best mechanical properties. The highest bending strength of the extrusion product was over than 350MPa. It is far stronger than that of the human cortical bone (200MPa). SEM observations showed that the fiber structure began to appear at an extrusion ratio ER=3, and at the extrusion ratio ER=6, the chain axes of PLLA became aligned to the extrusion direction. The structure of extrusion products at the high extrusion ratio showed highly oriented fiber structure composed of micro‐fibril. At high extrusion ratio tranformation from α‐crystal to β‐crystal was also observed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here