Premium
Characterisation of filled and recycled PA6
Author(s) -
Maspoch Maria Lluïsa,
Ferrando Haritz Eder,
Velasco José Ignacio
Publication year - 2003
Publication title -
macromolecular symposia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.257
H-Index - 76
eISSN - 1521-3900
pISSN - 1022-1360
DOI - 10.1002/masy.200390096
Subject(s) - materials science , glass recycling , flexural strength , composite material , ultimate tensile strength , rheology , fraction (chemistry) , injection moulding , glass fiber , shrinkage , raw material , mass fraction , polymer , organic chemistry , chemistry
Filled PA6 are important representatives of engineering plastics used in automotive components. Nowadays, the demand of plastic recycled grades is increasing in this branch of industry but polymer recycling can undergo thermomechanical degradation processes with the results of a poor secondary material, regarding its properties. In this paper an investigation of thermal, mechanical (tensile, flexural and impact tests) and rheological properties of a sample of recycled and filled PA6, is reported as a function of the number of reprocessing operations (3 times) and of the fraction of recycled material (15, 30 and 50%) added to the virgin material. Recycled PA6, used in this study, comes from fibre grade production waste. Material was filled with 20% glass beads and 10% glass fibre, according to the specifications of the application, mainly to obtain a lower shrinkage in the end product. This work also shows that the mineral fraction, not being degraded during the injection process, allows better recyclability to the filled material. The properties of the recycled material remain below the virgin, and the best combination of both appears to be the mixture with 30w.% recycled fraction, which shows a lost of properties similar to 3 reprocessing operations.