z-logo
Premium
DGEBA monomer as a solvent for syndiotactic polystyrene
Author(s) -
Schut Jaap,
Stamm Manfred,
Dumon Michel,
Gérard JeanFrançois
Publication year - 2003
Publication title -
macromolecular symposia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.257
H-Index - 76
eISSN - 1521-3900
pISSN - 1022-1360
DOI - 10.1002/masy.200350830
Subject(s) - materials science , polystyrene , epoxy , thermosetting polymer , monomer , polymer chemistry , solvent , tacticity , melting point depression , polymer , thermoplastic , melting point , crystallization , phase (matter) , chemical engineering , composite material , polymerization , organic chemistry , chemistry , engineering
Syndiotactic polystyrene (sPS) has to be processed at high temperatures (i.e. >290°C due to its melting point of 270°C), which approaches its degradation temperature. We aim to facilitate the processing of sPS by lowering its melt temperature and viscosity with a curable epoxy/amine model system as reactive solvent, which will result in a thermoplastic‐thermoset polymer blend. As a first step we therefore investigated the melting behaviour of sPS in epoxy monomer, established its phase diagram, and investigated the crystalline form of sPS in these mixtures. DGEBA epoxy monomer is found to be a solvent for syndiotactic polystyrene at temperatures above 220°C. The DGEBA‐sPS phase diagram was established by means of DSC, on the basis of crystallization and melting peaks. The form of the curve in the phase diagram indicates that DGEBA is a poor solvent for sPS. In WAXS studies of blends only the β crystalline form was detected, not the δ form, thus no sPS‐DGEBA polymer‐solvent compounds (clathrates) were detected. However, DGEBA can still serve as a monomer for improved processing as it depresses the crystallization temperature by 20 to 60 K upon addition of 20 to 90 wt% DGEBA respectively, while a 16 to 45 K melting peak depression can be observed by adding 20 to 90 wt% DGEBA.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here