Premium
Drop deformation in polymer blends during uniaxial elongational flow
Author(s) -
Delaby I.,
Froelich D.,
Muller R.
Publication year - 1995
Publication title -
macromolecular symposia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.257
H-Index - 76
eISSN - 1521-3900
pISSN - 1022-1360
DOI - 10.1002/masy.19951000121
Subject(s) - materials science , drop (telecommunication) , composite material , deformation (meteorology) , polymer , newtonian fluid , viscosity , pressure drop , surface tension , quenching (fluorescence) , thermodynamics , optics , physics , telecommunications , computer science , fluorescence
The deformation in uniaxial elongational flow of dispersed droplets in immiscible molten polymer blends was studied for negligible interfacial tension and for viscosity ratio p = η(drop)/η(matrix) between 0.005 and 13, with an original method based on quenching elongated specimens. Although drop deformation (drop major axis over initial diameter) was in the range 1 < λ d < 5, a good overall agreement was found with the small deformation Newtonian theory, which predicts that the drop versus matrix deformation ranges from 5/3 to 0 when p increases from 0 to infinity. The theoretical prediction that for p lower than 1, the droplet should deform more than the faraway surrounding matrix, with a limiting ratio of 5/3 at vanishing droplet viscosity, was experimentally verified.