Premium
Polymer crystallization: Simulation with entropic barrier model and application to specific polymers
Author(s) -
GoldbeckWood Gerhard
Publication year - 1994
Publication title -
macromolecular symposia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.257
H-Index - 76
eISSN - 1521-3900
pISSN - 1022-1360
DOI - 10.1002/masy.19940810126
Subject(s) - polymer , crystallization , materials science , crystallization of polymers , polymer science , chemical engineering , polymer chemistry , composite material , engineering
The growth of polymer single crystals has been simulated on the basis of a simple two‐dimensional ‘entropic barrier’ model. The chain is described by a sequence of growth units. Their additions and removals are determined by rate constants obeying detailed balance. The crystallization is then simulated by a kinetic Monte Carlo algorithm. An application of the model to specific crystallizable polymers (polyethylene, isotactic polystyrene, isotactic polypropylene, polyhydroxybuterate and polypivalolactone) is presented. Input parameter values for the model are derived from the respective surface free energies, bulk enthalpies, melting points and crystallographic repeat lengths. The only free parameter is the length of a polymer growth unit. This is set to half the lamellar crystal thickness at large undercooling. The lamellar thicknesses calculated on this basis are in good agreement with experimental data. An analysis of the growth unit lengths of the different polymers indicates a scaling with the chain persistence length in the melt.