Premium
The influence of interphases on properties of epoxy resin composites
Author(s) -
Kosfeld Robert,
Brostow Witold,
Hess Michael,
Marzi Thomas,
Schroeder Ulrich
Publication year - 1993
Publication title -
makromolekulare chemie. macromolecular symposia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.257
H-Index - 76
eISSN - 1521-3900
pISSN - 0258-0322
DOI - 10.1002/masy.19930760137
Subject(s) - interphase , composite material , materials science , epoxy , glass transition , plasticizer , composite number , polymer , curing (chemistry) , swelling , glass fiber , genetics , biology
Water sorption was determined and dynamic‐mechanical measurements made on dry and water‐containing systems. Different types of surface treatments of the glass fiber were studied. Immobilization of polymer chains in the interphase is determined by the nature of the curing system, annealing conditions, and surface treatment of glass fibers. Penetrating water can be found at three kinds of locations in the composite; water in the interphase has different properties than water in the polymer matrix and in microvoids. This fact can be used as a microscopic probe in epoxy‐containing composites. Water content depends on the density of polar groups and the density of the network. At higher temperatures water causes crazes, at lower it mainly acts as a plasticizer. Water in crazes does not affect the glass transition temperature Tg, but it decreases (tan δ) and weakens the material. As long as water mainly goes into swelling, energy transfer between the resin and the matrix is not affected. The reinforcement then works as it should. The results demonstrate the importance of interphase properties on the behavior of the composite.