Premium
Diffusion and phase separation in polymer solution during asymmetric membrane formation
Author(s) -
van Den Boomgaard Th.,
Boom R. M.,
Smolders C. A.
Publication year - 1990
Publication title -
makromolekulare chemie. macromolecular symposia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.257
H-Index - 76
eISSN - 1521-3900
pISSN - 0258-0322
DOI - 10.1002/masy.19900390123
Subject(s) - membrane , phase inversion , microfiltration , polymer , mass transfer , chemistry , chemical engineering , chemical physics , diffusion , synthetic membrane , separation process , porosity , solvent , phase (matter) , thermodynamics , polymer chemistry , materials science , chromatography , organic chemistry , biochemistry , physics , engineering
Most of the commercially available polymeric membranes are prepared by the phase inversion process. In this process a thermodynamically stable polymer solution is brought to phase separation by immersing the solution in a surplus of nonsolvent, followed by an exchange of solvent and nonsolvent. The ultimate membrane structure is the result of an interplay of mass transfer and phase separation. Asymmetric membranes as well as symmetrical porous membranes can be obtained. Two types of demixing processes ( l‐l phase separation and formation of aggregates) can be distinguished by the kinetics of phase separation, as the formation of aggregates is supposed to be a slower process than l‐l demixing. Because it is impossible to measure the composition changes during the demixing processes experimentally, a theoretical analysis has to be applied. A suitable formalism to calculate the diffusion induced composition changes in the immersed casting solution, as a function of thermodynamic and hydrodynamic interaction parameters will be described. With this theory it can be shown that two distinctly different mechanisms of membrane formation may occur resulting in two different types of membranes. One type has a relatively thick toplayer and mostly exhibits reverse osmosis, gas separation and pervaporation properties; the other type results in a porous type of membrane, which will exhibit ultra‐ and microfiltration properties. Model calculations are in agreement with light transmission experiments on membrane forming systems. Therefore, it could be concluded that the elucidation of the diffusion behavior in the immersed polymer film is the key to better understanding of membrane formation by means of immersion precipitation.