z-logo
Premium
Flexible Cyclic‐Poly(phthalaldehyde)/Poly(ε‐caprolactone) Blend Fibers with Fast Daylight‐Triggered Transience
Author(s) -
Li Shanshan,
Rizvi Mehedi H.,
Lynch Brian B.,
Tracy Joseph B.,
Ford Ericka
Publication year - 2021
Publication title -
macromolecular rapid communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 154
eISSN - 1521-3927
pISSN - 1022-1336
DOI - 10.1002/marc.202000657
Subject(s) - materials science , composite material , caprolactone , plasticizer , elastomer , ultimate tensile strength , fiber , polymer , polymerization
Cyclic‐poly(phthalaldehyde) (cPPHA) exhibits photo‐triggerable depolymerization on‐demand for applications like the photolithography of microfabricated electronics. However, cPPHA is inherently brittle and thermally sensitive; both of these properties limit its usefulness as an engineering plastic. Prior to this report, small molecule plasticizers are added to cPPHA‐based films to make the polymer more flexible. But plasticizers can eventually leach out of cPPHA, then leaving it increasingly more brittle throughout product lifetime. In this research, a new approach to fabricating flexible cPPHA blends for use as spun fibers is achieved through the incorporation of poly (ε‐caprolactone) (PCL) by a modified wet spinning method. Among blend compositions, the 50/50 cPPHA/PCL fiber shows fast transience (<50 s) in response to daylight while retaining the flexibility of PCL and mechanical properties of an elastomer (i.e., tensile strength of ≈8 MPa, Young's modulus of ≈118 MPa, and elongation at break of ≈190%). Embedding 2 wt% gold nanoparticles to cPPHA can further improve the transience rate of fibers comprising less than 50% cPPHA. These flexible, daylight‐triggerable cPPHA/PCL fibers can be applied to an extensive range of applications, such as wearable electronics, intelligent textiles, and zero waste packaging for which modest mechanical performance and fast transience are desired.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here