z-logo
Premium
Imaging Proton Transport in Giant Vesicles through Cyclic Peptide–Polymer Conjugate Nanotube Transmembrane Ion Channels
Author(s) -
Binfield Jason G.,
Brendel Johannes C.,
Cameron Neil R.,
Eissa Ahmed M.,
Perrier Sébastien
Publication year - 2018
Publication title -
macromolecular rapid communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 154
eISSN - 1521-3927
pISSN - 1022-1336
DOI - 10.1002/marc.201700831
Subject(s) - vesicle , membrane , lipid bilayer , cyclic peptide , bilayer , biophysics , chemistry , nanotechnology , biological membrane , supramolecular chemistry , proton transport , conjugate , combinatorial chemistry , peptide , materials science , organic chemistry , biochemistry , molecule , biology , mathematical analysis , mathematics
Since their discovery in 1993, interest in various aspects of cyclic peptides (CPs) has expanded rapidly. Of particular note is their potential to form artificial ion channels in lipid membranes, an attractive characteristic in supramolecular chemistry and biological research. The design and synthesis of cyclic peptide–polymer conjugates (CPPCs) that can self‐assemble within lipid bilayers into nanotubes, mimicking naturally occurring membrane channels and pores, has been reported. However, methods that allow direct detection of the transport process with high levels of certainty are still lacking. This work focuses on the development of a simple but reliable approach to verify and quantify proton transport across a bilayer membrane. Giant unilamellar vesicles (GUVs) are created via the electroformation method and CPPCs are incorporated in GUV membranes at varying concentrations (0–10%). Confocal fluorescence microscopy is used to demonstrate full inclusion of fluorescein‐labeled CPPCs in the GUV membranes. The pH‐sensitive dye carboxyfluorescein is encapsulated within the water pool of the GUVs and used as an indicator of proton transport. This assay is versatile and can be exploited on other existing proton transporter systems, providing a consistent tool to compare their performances. It should also aid the development of novel antineoplastics and drug delivery systems.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here