z-logo
Premium
Click Chemistry in Functional Aliphatic Polycarbonates
Author(s) -
Dai Yu,
Zhang Xiaojin,
Xia Fan
Publication year - 2017
Publication title -
macromolecular rapid communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 154
eISSN - 1521-3927
pISSN - 1022-1336
DOI - 10.1002/marc.201700357
Subject(s) - click chemistry , polymerization , chemistry , functional polymers , polymer chemistry , michael reaction , telechelic polymer , organic chemistry , thiol , polymer , combinatorial chemistry , end group , catalysis
Click chemistry, one of the most important methods in conjugation, plays an extremely significant role in the synthesis of functional aliphatic polycarbonates, which are a group of biodegradable polymers containing carbonate bonds in their main chains. To date, more than 75 articles have been reported on the topic of click chemistry in functional aliphatic polycarbonates. However, these efforts have not yet been highlighted. Six categories of click reactions (alkyne‐azide reaction, thiol‐ene reaction, Michael addition, epoxy‐amine/thiol reaction, Diels‐Alder reaction, and imine formation) that have been afforded for further post‐polymerization modification of polycarbonates are reviewed. Through this review, a comprehensive understanding of functional aliphatic polycarbonates aims to afford insight on the design of polycarbonates for further post‐polymerization modification via click chemistry and the expectation of the practical application.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here